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Sampling Distributions and

Estimation — Part ||



Today: What we will cover

Properties of sampling distributions and estimators

» Bias and consistency
» Why we divide by (n — 1) for the sample variance
» Biased samples

» Efficiency and mean squared error

What happens as n gets really big?

» Consistency, Law of Large Numbers

» Central Limit Theorem (more on this in later lectures)
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Unbiased means “Right on Average”

Bias of an Estimator
Let «/9\,, be a sample estimator of a population parameter 6. The
bias of 8, is E[6,] — bo.

Unbiased Estimator

A sample estimator 5,, of a population parameter 6y is called
unbiased if bias(f) = 0. Equivalently E[g,,] =6y
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Why (n — 1) for sample variance?
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Why (n — 1) for sample variance?

We will show that having n — 1 in the denominator ensures:

E[S?]=E [ﬁ ST (X - X)?

i=1

under random sampling.
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Why (n — 1) for sample variance?

Step # 1 — Tedious but straightforward algebra gives:

n

> (% - %)’ =

i=1

> (X - u)2] — n(X — p)?
i=1

You are not responsible for proving Step #1 on an exam.
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n n n

S=X)? = S (K—ptu=X) =D (X —w) - (X )]

i=1 i=1 i=1

n

= > [(X—n)?—2X — )X —p)+ (X = )]
i=1

= D> (Xi—p)P =D 20X — (X —p)+ Y (X —p)
i=1 i=1

i=1
= [DoXi—w)?| —2X =) D> (X — )+ n(X — p)?
| i=1
= DoXi—w’| —2X—p) <ZX:'ZN>+"()_<H)2
L i i=1 i=1

= D (Xi—w)?| —2(X = ) (nX = np) + n(X = p)?

= D0 = | = 2n(X — w)? + n(X — u)?

= DoXi—w)?| = n(X—n?
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Why (n — 1) for sample variance?

Step # 2 — Take Expectations of Step # 1:

= E HZH:(XI' —#)2} - n(>_<—ﬂ)2]

i=1

Where we have used the linearity of expectation.
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Why (n — 1) for sample variance?

Step # 3 — Use assumption of random sampling:

X1,...,Xn ~ iid with mean p and variance ¢?

S - x| - if[(x;—u)ﬂ CnE[(R - )]

i=1
= Y Var(X;) - n E [(X — E[X])?]
i=1

E

n
= Z Var(X;) — n Var(X) = no? — o°
i=1

= (r:— 1)02

Since we showed in last lecture that E[X] = u and Var(X) = o2/n

under this random sampling assumption.
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Why (n — 1) for sample variance?

Finally — Divide Step # 3 by (n — 1):

(n—1)o? 5

ElsT = £ [ﬁi(x,_xy] ~ a1 O
i=1

Hence, having (n — 1) in the denominator ensures that the sample

variance is ‘“correct on average,” that is unbiased.
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A Different Estimator of the Population Variance

Ag_l w2
= ng(x, X)

. 1o S 2| (n—1)0?
E[UQ]ZE[an;(Xi—X) =_E ;(Xi—x) =
Bias of 52

142 12 2
E[6?] - o2 — (n—1)o 2 (n—1)o —niz—az/n
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How Large is the Average Family? -

How many brothers and sisters are in your family,

including yourself?

13/ 36



The average number of children per family was

about 2.0 twenty years ago.
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What's Going On Here?

Biased Sample!
> Zero children = didn't send any to college

» Sampling by children so large families oversampled
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Another example: weighing candy

» Last semester Prof DiTraglia brought in a big bag of candies

and asked everyone to reach in, grab five candies and weigh
them
» We then took the average weight of all of the candies pulled

out by the students
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Candy Weighing: 82 Estimates, Each With n =5

Histogram
-
o _ 0L
- '
Summary of Sampling Dist. - !
Overestimates 68 § o :
o
Exactly Correct 0 2 '
| |
Underestimates 14 © !
E[4] 1151 grams o :
SD(% 205 grams T T T
600 1000 1400
Actual Mass: g =958 grams Est. Weight of All Candies (grams)

17/ 36



What was in the bag?

100 Candies Total:
» 20 Fun Size Snickers Bars (large)
> 30 Reese's Miniatures (medium)

» 50 Tootsie Roll “Midgees” (small)

So What Happened?

Not a random sample! The Snickers bars were oversampled.

Could we have avoided this? How?
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Let X1, Xo, ... X, ~ iid mean p, variance o2 and define
X, = %27:1 X;. True or False:

X, is an unbiased estimator of

(a) True
(b) False

TRUE!
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Let X1, X5,... X, ~ iid mean u, variance o2. True or False:

X1 is an unbiased estimator of 1

(a) True
(b) False

TRUE!
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How to choose between two unbiased estimators?

Suppose X1, X, ... X, ~ iid with mean p and variance o2

ElX,] = i;x,- :flzlfmzu

EXi] = n

Var(X,) = (,17 > X ) = % > Var(X;) =

i=1
Var(X1) = o2
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Efficiency - Compare Unbiased Estimators by Variance

Let 51 and 52 be unbiased estimators of 6. We say that 51 is more
efficient than By if Var(f) < Var(6y).
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Mean-Squared Error

Except in very simple situations, unbiased estimators are hard to
come by. In fact, in many interesting applications there is a

tradeoff between bias and variance:
» Low bias estimators often have a high variance

» Low variance estimators often have high bias
Mean-Squared Error (MSE): Squared Bias plus Variance
MSE(8) = Bias(6)? + Var(d)
Root Mean-Squared Error (RMSE): v'MSE
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Let's calculate MSE for Candy Experiment

Frequency

Elf)
to
SD()

1151 grams

058 grams

205 grams

Histogram

Bias

MSE

600 800 1000 1200 1400 1600

Est. Weight of All Candies (grams)

RMSE

1151 grams — 958 grams
193 grams

Bias® + Variance

(193% 4 205°) grams®
7.0274 x 10* grams®
VMSE = 282 grams
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Finite Sample versus Asymptotic Properties of Estimators

Finite Sample Properties
For fixed sample size n what are the properties of the sampling

distribution of 67,,? (E.g. bias and variance.)

Asymptotic Properties
What happens to the sampling distribution of 5,, as the sample size

n gets larger and larger? (That is, n — 00).
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Why Asymptotics?

Law of Large Numbers

Make precise what we mean by “bigger samples are better.”

Central Limit Theorem
As n — oo pretty much any sampling distribution is

well-approximated by a normal random variable!
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Consistency

Consistency

If an estimator 6, (which is a RV) converges to 6 (a constant) as

n — oo, we say that 6, is consistent for 6.

What does it mean for a RV to converge to a constant?

For this course we'll use MSE Consistency:

lim MSE(6,) =0

n—oo

You don’t need to understand this any further than knowing that

the bias and the variance both converge to zero as n gets very big.
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Law of Large Numbers (aka Law of Averages)

Let X1, Xo, ... X, ~ iid mean pu, variance 0. Then the sample

mean
_ 1<

X =~ ZX;
i=1

is consistent for the population mean p.

Let's show this formally using bias and variance...

28/ 36



Law of Large Numbers (aka Law of Averages)

Let X1, Xs,... X, ~ iid mean u, variance a2

_ 1 <&
E[X)] = E[nZX,- =
i=1

Var(X,) = Var (;:ZX,) =02%/n
i=1

MSE(X,) = Bias(X,)? + Var(X,)
= (E[Xa] — p)? + Var(X,)
= 0+0°/n

— 0

Hence X, is consistent for 1
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Important!

An estimator can be biased but still consistent, as long as the bias

disappears as n — oo
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Suppose X1, Xa, ..., X, ~ iid N(u,c?). What is the sampling
distribution of X,,?

a

()
(b)
(c) F(n,n)
(d) N(p,a?/n)
(¢)

e) Not enough information to determine.
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But still, how can something random

converge to something constant?
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Sampling Distribution of X, Collapses to 1

Look at an example where we can directly calculate not only the
mean and variance of the sampling distribution of X, but the

sampling distribution itself.

X1, X2, ..., Xy ~iid N(u,0?) = X, ~ N(p, a2 /n)
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Sampling Distribution of X, Collapses to 1
X1, X2, ...y Xp ~iid N(p, 02 = X, ~ N(u, 02 /n).

< <
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~ ~
- - /
e I/—T/T¥ ° 7 T T T 1
-4 -2 0 2 4 -4 -2 0 2 4
n=1 n=10
< <
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~ ~
- -
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n=>50 n =100

Figure: Sampling Distributions for X, where X; ~ iid N(0,1)
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Another Visualization: Keep Adding Observations

Xn
-4 -3 -2 -1

-5

-6

T T T T
0 2000 4000 6000 8000 10000

Figure: Running sample means: X; ~ iid N(0,100)

n Xn

1 -2.69

2 -3.18

3 -594

4 427

5 -2.62

10 -2.89
20 -5.33
50 -2.94
100 -1.58
500 -0.45
1000 -0.13
5000 -0.05
10000  0.00
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Important!

Although | showed two examples involving normal RVs, the Law of
Large Numbers (LLN) holds IN GENERAL!

36/ 36



