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Sampling Distributions and

Estimation – Part II
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Today: What we will cover

Properties of sampling distributions and estimators

I Bias and consistency

I Why we divide by (n − 1) for the sample variance

I Biased samples

I Efficiency and mean squared error

What happens as n gets really big?

I Consistency, Law of Large Numbers

I Central Limit Theorem (more on this in later lectures)

3/ 36



Unbiased means “Right on Average”

Bias of an Estimator

Let θ̂n be a sample estimator of a population parameter θ0. The

bias of θ̂n is E [θ̂n]− θ0.

Unbiased Estimator

A sample estimator θ̂n of a population parameter θ0 is called

unbiased if bias(θ̂) = 0. Equivalently E [θ̂n] = θ0
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Why (n − 1) for sample variance?
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Why (n − 1) for sample variance?

We will show that having n − 1 in the denominator ensures:

E [S2] = E

[
1

n − 1

n∑
i=1

(
Xi − X̄

)2

]
= σ2

under random sampling.
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Why (n − 1) for sample variance?

Step # 1 – Tedious but straightforward algebra gives:

n∑
i=1

(
Xi − X̄

)2
=

[
n∑

i=1

(Xi − µ)2

]
− n(X̄ − µ)2

You are not responsible for proving Step #1 on an exam.
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n∑
i=1

(
Xi − X̄

)2
=

n∑
i=1

(
Xi − µ + µ− X̄

)2
=

n∑
i=1

[
(Xi − µ)− (X̄ − µ)

]2
=

n∑
i=1

[
(Xi − µ)2 − 2(Xi − µ)(X̄ − µ) + (X̄ − µ)2

]
=

n∑
i=1

(Xi − µ)2 −
n∑

i=1

2(Xi − µ)(X̄ − µ) +
n∑

i=1

(X̄ − µ)2

=

[
n∑

i=1

(Xi − µ)2

]
− 2(X̄ − µ)

n∑
i=1

(Xi − µ) + n(X̄ − µ)2

=

[
n∑

i=1

(Xi − µ)2

]
− 2(X̄ − µ)

(
n∑

i=1

Xi −
n∑

i=1

µ

)
+ n(X̄ − µ)2

=

[
n∑

i=1

(Xi − µ)2

]
− 2(X̄ − µ)(nX̄ − nµ) + n(X̄ − µ)2

=

[
n∑

i=1

(Xi − µ)2

]
− 2n(X̄ − µ)2 + n(X̄ − µ)2

=

[
n∑

i=1

(Xi − µ)2

]
− n(X̄ − µ)2
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Why (n − 1) for sample variance?

Step # 2 – Take Expectations of Step # 1:

E

[
n∑

i=1

(
Xi − X̄

)2

]
= E

[{
n∑

i=1

(Xi − µ)2

}
− n(X̄ − µ)2

]

= E

[
n∑

i=1

(Xi − µ)2

]
− E

[
n(X̄ − µ)2

]
=

n∑
i=1

E
[
(Xi − µ)2

]
− n E

[
(X̄ − µ)2

]
Where we have used the linearity of expectation.
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Why (n − 1) for sample variance?

Step # 3 – Use assumption of random sampling:

X1, . . . ,Xn ∼ iid with mean µ and variance σ2

E

[
n∑

i=1

(
Xi − X̄

)2

]
=

n∑
i=1

E
[
(Xi − µ)2

]
− n E

[
(X̄ − µ)2

]
=

n∑
i=1

Var(Xi )− n E
[
(X̄ − E [X̄ ])2

]
=

n∑
i=1

Var(Xi )− n Var(X̄ ) = nσ2 − σ2

= (n − 1)σ2

Since we showed in last lecture that E [X̄ ] = µ and Var(X̄ ) = σ2/n

under this random sampling assumption.
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Why (n − 1) for sample variance?

Finally – Divide Step # 3 by (n − 1):

E [S2] = E

[
1

n − 1

n∑
i=1

(
Xi − X̄

)2

]
=

(n − 1)σ2

n − 1
= σ2

Hence, having (n − 1) in the denominator ensures that the sample

variance is “correct on average,” that is unbiased.
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A Different Estimator of the Population Variance

σ̂2 =
1

n

n∑
i=1

(
Xi − X̄

)2

E [σ̂2] = E

[
1

n

n∑
i=1

(
Xi − X̄

)2

]
=

1

n
E

[
n∑

i=1

(
Xi − X̄

)2

]
=

(n − 1)σ2

n

Bias of σ̂2

E [σ̂2]− σ2 =
(n − 1)σ2

n
− σ2 =

(n − 1)σ2

n
− nσ2

n
= −σ2/n
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How Large is the Average Family?

How many brothers and sisters are in your family,

including yourself?
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The average number of children per family was

about 2.0 twenty years ago.
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What’s Going On Here?

Biased Sample!

I Zero children ⇒ didn’t send any to college

I Sampling by children so large families oversampled
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Another example: weighing candy

I Last semester Prof DiTraglia brought in a big bag of candies

and asked everyone to reach in, grab five candies and weigh

them

I We then took the average weight of all of the candies pulled

out by the students
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Candy Weighing: 82 Estimates, Each With n = 5
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What was in the bag?

100 Candies Total:

I 20 Fun Size Snickers Bars (large)

I 30 Reese’s Miniatures (medium)

I 50 Tootsie Roll “Midgees” (small)

So What Happened?

Not a random sample! The Snickers bars were oversampled.

Could we have avoided this? How?
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Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2 and define

X̄n = 1
n

∑n
i=1 Xi . True or False:

X̄n is an unbiased estimator of µ

(a) True

(b) False

TRUE!
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Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2. True or False:

X1 is an unbiased estimator of µ

(a) True

(b) False

TRUE!
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How to choose between two unbiased estimators?

Suppose X1,X2, . . .Xn ∼ iid with mean µ and variance σ2

E [X̄n] = E

[
1

n

n∑
i=1

Xi

]
=

1

n

n∑
i=1

E [Xi ] = µ

E [X1] = µ

Var(X̄n) = Var

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

Var(Xi ) = σ2/n

Var(X1) = σ2
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Efficiency - Compare Unbiased Estimators by Variance

Let θ̂1 and θ̂2 be unbiased estimators of θ0. We say that θ̂1 is more

efficient than θ̂2 if Var(θ̂1) < Var(θ̂2).
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Mean-Squared Error

Except in very simple situations, unbiased estimators are hard to

come by. In fact, in many interesting applications there is a

tradeoff between bias and variance:

I Low bias estimators often have a high variance

I Low variance estimators often have high bias

Mean-Squared Error (MSE): Squared Bias plus Variance

MSE (θ̂) = Bias(θ̂)2 + Var(θ̂)

Root Mean-Squared Error (RMSE):
√

MSE
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Let’s calculate MSE for Candy Experiment
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Finite Sample versus Asymptotic Properties of Estimators

Finite Sample Properties

For fixed sample size n what are the properties of the sampling

distribution of θ̂n? (E.g. bias and variance.)

Asymptotic Properties

What happens to the sampling distribution of θ̂n as the sample size

n gets larger and larger? (That is, n→∞).
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Why Asymptotics?

Law of Large Numbers

Make precise what we mean by “bigger samples are better.”

Central Limit Theorem

As n→∞ pretty much any sampling distribution is

well-approximated by a normal random variable!
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Consistency

Consistency

If an estimator θ̂n (which is a RV) converges to θ0 (a constant) as

n→∞, we say that θ̂n is consistent for θ0.

What does it mean for a RV to converge to a constant?

For this course we’ll use MSE Consistency:

lim
n→∞

MSE(θ̂n) = 0

You don’t need to understand this any further than knowing that

the bias and the variance both converge to zero as n gets very big.
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Law of Large Numbers (aka Law of Averages)

Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2. Then the sample

mean

X̄n =
1

n

n∑
i=1

Xi

is consistent for the population mean µ.

Let’s show this formally using bias and variance...
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Law of Large Numbers (aka Law of Averages)

Let X1,X2, . . .Xn ∼ iid mean µ, variance σ2.

E [X̄n] = E

[
1

n

n∑
i=1

Xi

]
= µ

Var(X̄n) = Var

(
1

n

n∑
i=1

Xi

)
= σ2/n

MSE(X̄n) = Bias(X̄n)2 + Var(X̄n)

=
(
E [X̄n]− µ

)2
+ Var(X̄n)

= 0 + σ2/n

→ 0

Hence X̄n is consistent for µ
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Important!

An estimator can be biased but still consistent, as long as the bias

disappears as n→∞

σ̂2 =
1

n

n∑
i=1

(
Xi − X̄

)2

Bias of σ̂2

E [σ̂2]− σ2 =
(n − 1)σ2

n
− σ2 = − σ2/n→ 0

30/ 36



Suppose X1,X2, . . . ,Xn ∼ iid N(µ, σ2). What is the sampling

distribution of X̄n?

(a) χ2(n)

(b) t(n)

(c) F (n, n)

(d) N(µ, σ2/n)

(e) Not enough information to determine.

31/ 36



But still, how can something random

converge to something constant?
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Sampling Distribution of X̄n Collapses to µ

Look at an example where we can directly calculate not only the

mean and variance of the sampling distribution of X̄n, but the

sampling distribution itself:

X1,X2, . . . ,Xn ∼ iid N(µ, σ2)⇒ X̄n ∼ N(µ, σ2/n)
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Sampling Distribution of X̄n Collapses to µ

X1,X2, . . . ,Xn ∼ iid N(µ, σ2 ⇒ X̄n ∼ N(µ, σ2/n).
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Figure: Sampling Distributions for X̄n where Xi ∼ iid N(0, 1)
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Another Visualization: Keep Adding Observations
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Figure: Running sample means: Xi ∼ iid N(0, 100)

n X̄n

1 -2.69

2 -3.18

3 -5.94

4 -4.27

5 -2.62

10 -2.89

20 -5.33

50 -2.94

100 -1.58

500 -0.45

1000 -0.13

5000 -0.05

10000 0.00
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Important!

Although I showed two examples involving normal RVs, the Law of

Large Numbers (LLN) holds IN GENERAL!
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